ARCHIVED REPORT

For data and forecasts on current programs please visit

www.forecastinternational.com or call +1 203.426.0800

Grumman EA-6 - Archived 4/2003

Outlook

- New production ended in 1991
- Block 89A and ICAP III modification programs are under way

10 Year Unit Production Forecast 2003 - 2012									t	
Uni	ts									
ONGOING MODERNIZATION										
0 200		2005	2006	2007	2008	2009	2010	2011	2012	
0	0	0	0	0	0	0	0	0	0	
Years										

Orientation

Description. Twin-engine electronic warfare aircraft; EA-6A accommodated crew of two, while EA-6B accommodates a crew of four.

Sponsor. US Naval Air Systems Command, Washington, DC, USA.

Contractors. Grumman Corp; Bethpage, New York, USA. In 1994, Grumman was merged into Northrop Grumman Corp.

Status. Production of EA-6B aircraft was completed in 1991.

Total Produced. Grumman produced a total of 21 EA-6A and 170 EA-6B aircraft. In addition, six A-6As were converted to the EA-6A configuration.

Application. Electronic countermeasures (ECM); stand-off jamming of hostile aircraft-, ship-, and land-based weapon systems; and destruction of anti-aircraft missile radars.

Price Range. FY89 unit cost of EA-6B, \$47.7 million.

Technical Data

(EA-6B)

Design Features. Conventional, semi-monocoque fuselage carrying a cantilevered, mid-wing monoplane wing set with 25 percent sweepback at the quarter-

chord station; hydraulically operated, nearly full-span trailing- and leading-edge flaps. The EA-6B includes fin-tip antenna and seats four.

	<u>Metric</u>	<u>US</u>
Dimensions		
Length overall	18.24 m	59.83 ft
Height	4.95 m	16.25 ft
Wingspan	16.15 m	53.0 ft
Wingspan, folded	7.87 m	25.83 ft
Waight		
Weight	11.001.1	
Empty	14,321 kg	31,572 lb
Max external fuel	4,547 kg	10,025 lb

	<u>Metric</u>	<u>US</u>
T-O weight		
А	24,668 kg	54,383 lb
В	27,236 kg	60,045 lb
Performance		
Cruising speed at optimum altitude ^(a)	774 km/h	418 kt
Service ceiling ^(a)	11,580 m	38,000 ft
Ferry range (max external fuel)	3,254 km	1,756 nm

Propulsion

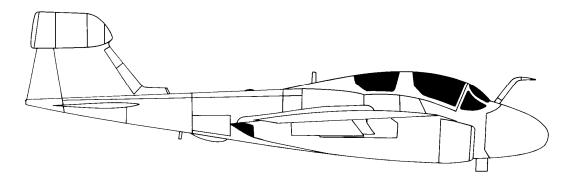
EA-6B

UTC Pratt & Whitney J52-P-408 non-augmented turbojets rated at 49.8 kN (11,200 lbst) each.

Armament

Originally none. Currently capable of carrying High Speed Anti-Radiation Missiles (HARM).

Crew


Pilot and three ECM officers.

(2)

Notes

A: From carrier in stand-off jamming configuration with five ECM pods.B: From field in ferry range configuration with maximum external and internal fuel.

^(a)With five ECM pods.

GRUMMAN EA-6

Source: Forecast International

Variants/Upgrades

<u>EA-6A</u>. Initial EA-6 version. Purchased by the US Marine Corps. Total of 27 were built, including six A-6As converted to EA-6A configuration. Prototype first flown in 1963.

<u>EA-6B</u>. Final production version. The US Navy received the last of 170 EA-6Bs in 1991.

Program Review

Background. The US Navy/Grumman EA-6 electronic countermeasures aircraft was directly derived from the

Long Island (New York) manufacturer's A-6 Intruder medium attack bomber. Grumman was selected as the

winner in the US Navy's A2F-1 competition in December 1957. The first A-6A flew in April 1960, and the type entered service in early 1963. Grumman received a development contract for the EA-6B in 1966, flew a prototype EA-6B in May 1968, and began deliveries in January 1971. Since that time, a total of 170 EA-6Bs have been produced for carrier- and shore-based operations.

<u>Mission and Technical Characteristics</u>. The Prowler's primary mission is to protect the surface fleet and aircraft by jamming hostile radars and communications. As compared with the two-seat A-6, the nose of the EA-6B was lengthened to accommodate two additional crewmen. The EA-6B can also be distinguished from its attack counterpart by the large antenna fairing atop the vertical stabilizer. The aircraft carries five integrally powered pods containing a total of 10 jamming transmitters. Each pod covers one of seven different frequency bands, and any mix of pods and fuel tanks may be installed depending on particular mission requirements.

<u>Production Configurations</u>. The EA-6B was manufactured in several different versions. The aircraft progressed from the Standard configuration of 1971 to EXCAP (Expanded Capability), ICAP (Improved Capability) I, ICAP II, ICAP II Block 82, and ICAP II Block 86.

All US Navy ICAP I aircraft have been upgraded to the ICAP II standard, which features improved computergenerated jamming techniques. Included in the ICAP II upgrade were installation of the ASN-123 signal data converter/digital display group and the ASN-130 inertial navigation system, and replacement of the AYA-6 computer with the Navy standard AYK-14 computer. The ICAP II upgrade also included incorporation of cooperative countermeasures and Band 7 frequency extension. The upgrade program was completed in 1991.

EA-6B ADVCAP Remanufacturing. In 1993, the US Navy canceled its plans to remanufacture a total of 102 EA-6B aircraft into the Advanced Capability (ADVCAP) configuration, which was also known as Block 91. The Block 91 configuration included structural, propulsion, and electronics modifications. Among the changes were improvements to the EA-6B's tactical jamming system that included incorporation of a modern detection/processing system called the Receiver Processor Group (RPG). The RPG was designated OR-262(XN-1)/ALQ-99(V). The Block 91 standard also included the Sanders ALQ-149 countermeasures set, J52-P-409 engines, the Standard Attitude Heading Reference System, a Global Positioning System (GPS) receiver, head-up displays, dual AYK-14 computers, and two additional ALE-39 chaff/flare dispensers.

The decision to cancel the ADVCAP effort was driven by a combination of threat changes and affordability concerns. The high cost of the program (\$7.3 billion) had been a concern to the Navy.

The Navy is funding several other EA-6B improvement efforts. These efforts include a Structural Improvements program, which involves certain avionics modifications as well as the correction of structural deficiencies. Another effort is the ALQ-99 Pods program which involves the procurement of certain jammer pod components.

<u>J52-P-409 Powerplant</u>. The ADVCAP configuration included a new powerplant, the Pratt & Whitney J52-P-409 turbojet engine.

Under contract to the US Navy, Pratt & Whitney had been developing the J52-P-409 to replace the EA-6B's J52-P-408 engine. The improved engine, also known as the PW1212 and still available for orders, provides higher performance, improved fuel economy, and enhanced durability. New features include an improved low-pressure turbine, an increased-capacity fuel pump, modified fuel control, and an upgraded high-pressure turbine. It can deliver 53.4 kN (12,000 lbst) and provides 20 percent faster engine acceleration, increased mission range and time on station, and stallfree operation throughout the EA-6B's flight envelope. The upgrade in addition increases service life by over 20 years. The -408 can be upgraded to the -409 configuration through kit modification.

Funding

Recent and planned US Navy EA-6 funding is as follows:

	US FUNDING								
	FY	00	FY	701	FY	202	FY03 (Req)		
	QTY	AMT	QTY	AMT	QTY	AMT	QTY	AMT	
EA-6 Mods	-	255.9	-	184.4	-	149.7	-	223.5	
All \$ are in mill	ions.								

Recent Contracts

	Award	
Contractor	(\$ millions)	Date/Description
Northrop Grumman	21.0	Jan 2001 – Contract from US Navy for the fabrication and assembly of 23 Block 82-89A EA-6B upgrade kits and six Block 89-89A EA-6B upgrade kits.
Northrop Grumman	16.2	Jun 2001 – Contract from US Navy to continue work already in progress to perform the FY01 requirement for the standard depot-level maintenance and concurrent upgrade of two EA-6B Block 82 aircraft to the Block 89A configuration, eight EA-6B Block 82 aircraft to the Block 89A configuration, and four EA-6B Block 82 aircraft to the 89A configuration.
Northrop Grumman	9.7	Jun 2001 – Contract from US Navy for systems and software develop- ment for installation of the Multifunction Information Distribution System on the EA-6B aircraft.
Northrop Grumman	30.0	Nov 2001 – Modification to US Navy contract to develop 10 wing center sections in support of the EA-6B aircraft.
Northrop Grumman	9.6	Dec 2001 – Modification to US Navy contract to exercise an option for the fabrication and assembly of eight Block 82-89A EA-6B upgrade kits and six Block 89-89A EA-6B upgrade kits.
Northrop Grumman	9.9	Dec 2001 – Modification to US Navy contract to exercise an option for installation of three modification kits (Block 89A) into three EA-6B aircraft (Block 82) to be done concurrently with standard depot-level maintenance requirement, and installation of two modification kits (Block 89A) into two EA-6B aircraft (Block 82) as a stand-alone requirement.
Northrop Grumman	16.1	Sep 2002 – Modification to US Navy contract for systems and software development for installation of the Multifunction Information Distribution System on the EA-6B aircraft.
Northrop Grumman	23.3	Oct 2002 – Modification to US Navy contract for the production of 10 wing center sections for the EA-6B aircraft.

Timetable

Month	<u>1 Year Major Development</u>							
	1957	Competition for A2F-1 development contract						
Dec	1957	Grumman design selected						
Apr	1960	A-6A first flight						
Feb	1963	A-6A enters service						
	1963	EA-6A prototype first flight						
May	1968	EA-6B prototype first flight						
Nov	1970	A-6E first flight						
Jan	1971	EA-6B enters service						
Sep	1972	A-6E enters service						
Sep	1988	Last metal-wing A-6E delivered to USN						
Jul	1991	Final EA-6B delivery						
Feb	1992	Last delivery of A-6E						
	1993	US Navy EA-6B ADVCAP program canceled						

Worldwide Distribution

US Marines	20	EA-6B
US Navy	102	EA-6B

Forecast Rationale

The US Navy plans to keep the EA-6B in service until about the year 2015. Since the retirement of the US Air Force EF-111, the EA-6B has provided offensive electronic warfare capabilities for the Navy and the Air Force.

The Navy has begun modifying 122 EA-6Bs to the Block 89A configuration. The Block 89A improvements include new radios, an Embedded GPS Inertial Navigation System (EGI), a commercial off-the-shelf electronic flight instrumentation system, and enhancements to the AYK-14 computer.

A further EA-6B modification program, called ICAP III, is also under way. This program will provide the EA-6B with a reactive tactical jamming system to counter state-of-the-art frequency-agile radars. ICAP III will also provide new displays, controls, and software.

In March 1998, the Navy awarded a \$144.2 million contract to Northrop Grumman for engineering and manufacturing development for ICAP III. Northrop Grumman is teamed with BAE Systems on the program.

Northrop Grumman has modified two EA-6Bs to the ICAP III standard to serve as test aircraft for the program. The first ICAP III EA-6B made its initial flight in November 2001.

Eventually, all 122 of the US military's EA-6Bs are to be converted to the ICAP III configuration.

For further information on planned and projected EA-6 upgrades, see the Forecast International/DMS publication, *Airborne Retrofit & Modernization* Forecast.

Ten-Year Outlook

ESTIMATED CALENDAR YEAR PRODUCTION													
			High Confidence Level			Good Confidence Level			<u>ce</u>	Speculative			
Aircraft	(Engine)	thru 02	03	04	05	06	07	08	09	10	11	12	Total 03-12
GRUMMAN													
EA-6A	J52	21	0	0	0	0	0	0	0	0	0	0	0
EA-6B	J52-P-408A	170	0	0	0	0	0	0	0	0	0	0	0
Total Production		191	0	0	0	0	0	0	0	0	0	0	0